哈喽小伙伴们 ,今天给大家科普一个小知识。在日常生活中我们或多或少的都会接触到什么是格雷码方面的一些说法,有的小伙伴还不是很了解,今天就给大家详细的介绍一下关于什么是格雷码的相关内容。
格雷码(Gray code),又叫循环二进制码或反射二进制码 在数字系统中只能识别0和1,各种数据要转换为二进制代码才能进行处理,格雷码是一种无权码,采用绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。格雷码属于可靠性编码,是一种错误最小化的编码方式
简介
(资料图片)
因为,自然二进制码可以直接由数/模转换器转换成模拟信号,但某些情况,例如从十进制的3转换成4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。它在任意两个相邻的数之间转换时,只有一个数位发生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。
二、格雷码对照表
下表为几种自然二进制码与格雷码的对照表:
一般的,普通二进制码与格雷码可以按以下方法互相转换:
二进制码->格雷码(编码):从最右边一位起,依次将每一位与左边一位异或(XOR),作为对应格雷码该位的值,最左边一位不变(相当于左边是0);
格雷码-〉二进制码(解码):从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变).
数学(计算机)描述:
原码:p[n:0];格雷码:c[n:0](n∈N);编码:c=G(p);解码:p=F(c);
书写时按从左向右标号依次减小,即MSB->LSB,编解码也按此顺序进行
编码:
...................c[n]=p[n],
...................c[i]=p[i] XOR p[i+1] (i∈N,n-1≥i≥0);
解码:
...................p[n]=c[n],
...................P[i]=c[i] XOR p[i+1] (i∈N, n-1≥i≥0)。
Gray Code是由贝尔实验室的Frank Gray在20世纪40年代提出的(是1880年由法国工程师Jean-Maurice-Emlle
Baudot发明的),用来在使用PCM(Pusle Code Modulation)方法传送讯号时避免出错,并于1953年3月17日取得美国专利。由定义可知,Gray Code的编码方式不是唯一的,这里讨论的是最常用的一种。
用异或乘除法实现二进制码与格雷码互相转换
如果在二进制运算中忽略进位、退位,那么加减运算都变成了异或(XOR)。
用异或代替加减进行二进制竖式乘除,称为异或乘除,它的特点是无进退位。
由于没有退位,异或除法将变得更像多项式除法。
如:10101除以11将变成1100余1,而不是111。
二进制转格雷码:
只要异或乘以二分之三,即二进制的1.1,然后忽略小数部分;也可以理解成异或乘以三(即11),再右移一位。
格雷码转二进制:
异或乘以三分之二,即除以1.1,忽略余数;或者左移一位,再异或除以三,忽略余数。